A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs.

نویسندگان

  • Robert Gauvin
  • Taby Ahsan
  • Danielle Larouche
  • Philippe Lévesque
  • Jean Dubé
  • François A Auger
  • Robert M Nerem
  • Lucie Germain
چکیده

There is a clinical need for a functional tissue-engineered blood vessel because small-caliber arterial graft (<5 mm) applications are limited by the availability of suitable autologous vessels and suboptimal performances of synthetic grafts. This study presents an analysis of the mechanical properties of tissue-engineered vascular constructs produced using a novel single-step self-assembly approach. Briefly, the tissue-engineered vascular media were produced by culturing smooth muscle cell in the presence of sodium l-ascorbate until the formation of a cohesive tissue sheet. This sheet was then rolled around a tubular support to create a media construct. Alternatively, the tissue-engineered vascular adventitia was produced by rolling a tissue sheet obtained from dermal fibroblasts or saphenous vein fibroblasts. The standard self-assembly approach to obtain the two-layer tissue-engineered vascular constructs comprising both media and adventitia constructs consists of two steps in which tissue-engineered vascular media were first rolled on a tubular support and a tissue-engineered vascular adventitia was then rolled on top of the first layer. This study reports an original alternative method for assembling tissue-engineered vascular constructs comprising both media and an adventitia in a single step by rolling a continuous tissue sheet containing both cell types contiguously. This tissue sheet was produced by growing smooth muscle cells alongside fibroblasts (saphenous vein fibroblasts or dermal fibroblasts) in the same culture dish separated by a spacer, which is removed later in the culture period. The mechanical strength assessed by uniaxial tensile testing, burst pressure measurements, and viscoelastic behavior evaluated by stepwise stress relaxation tests reveals that the new single-step fabrication method significantly improves the mechanical properties of tissue-engineered vascular construct for both ultimate tensile strength and all the viscoelastic moduli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue engineering of vascular grafts

Tissue engineering of vascular grafts 187 1 3 Summary Background There is a considerable clinical need for a sufficient prosthetic small-diameter substitute which can compete with autologous vessels. Currently used synthetic materials have a poor performance due to high thrombogeneicity and development of intimal hyperplasia. Tissue engineering is an interesting alternative approach for vascula...

متن کامل

Colloids: Applications and Remaining Challenges

Using of colloids and polymeric microparticles are gradually increasing. It is observed that the positive effects of particles stems in both traditional applications such as column pickings, coatings and paints to more recent technologies in diagnostics, drug delivery and optical devices are well documented. This review focuses on importance of colloids and covers their applications on three le...

متن کامل

Colloids: Applications and Remaining Challenges

Using of colloids and polymeric microparticles are gradually increasing. It is observed that the positive effects of particles stems in both traditional applications such as column pickings, coatings and paints to more recent technologies in diagnostics, drug delivery and optical devices are well documented. This review focuses on importance of colloids and covers their applications on three le...

متن کامل

Features and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly

One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc....

متن کامل

Jet-based 3d Printing of Biological Constructs

Organ printing is the layer-by-layer bottom-up fabrication of complex cellular organization of native tissues or organs by bioprinting multiple cell types and other biomaterials at designated positions. The rising success rate of transplants has resulted in a critical need for more tissues and organs. Approximately 95,000 people are on the waiting list for new organs in the U.S. alone, and some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2010